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Introduction 
 Interest rate risk (IR risk) is more difficult to manage 

» Various interest rates in each currency, not perfectly correlated 

» We need a function describing the variation of the rate with maturity, the 
term structure of interest rates or yield curve. 

» The points of the curve do not show only parallel movements. 

 Tools available 
» Duration and convexity measures (equivalent to delta-gamma in previous 

slides) 

» Partial durations 

» Multiple deltas 

» Principal component analysis  

» Evolution around the latter like ICA 
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Zero-rates 
 n-year zero-coupon interest rate = 

» Interest earned on an investment starting today and lasting n years. 

» n-year spot rate, n-year zero rate, n-year zero 

» Annual compounded and continuous compounded rates:  

 The term structure of zero-rates is also called the zero-curve.  

   0,    and   0,cr t r t
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Forward rates 
 Annual compounded version 

 

 

 

 

 Continuously compounded version 

 

 

 

 

 Practitioners use also the previous approach when they work 
with intra-annual forwards 
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Some forward rates 
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Empirical research and expectations 
 The unbiased expectations hypothesis (UEH) 

» “The forward rate is an unbiased predictor of the future spot rate” 
» It cannot be true theoretically and almost surely cannot be true in reality 
» The UEH implies that, e.g. for a zero-coupon bond... 
» By definition 
» To prevent arbitrage, we know that 
» Using the last two equations, we get 

 The local expectations hypothesis (LEH) – equivalent to AOA 
» With AOA 
» The equivalence of the forward price and expected spot price is, however, true 

only for one-period-ahead forward prices.  
» The expected returns, taken using the martingale probabilities, of any 

strategies involving any bonds of any maturity, are equivalent and equal to the 
one-period spot rate, i.e., the shortest interest rate in the market 

 The market segmentation hypothesis 

 The liquidity premium hypothesis 

 0( )f T S T   

   (0) (0) 1rS S T S e       

0( ) (0) rf T S e

 0( )f T S T     

 0( ) Qf T S T    

Ref: Don Chance 
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LIBOR rates... 
 LIBOR 

» London Interbank Offered Rate: 1m, 3m, 6m and 12m rates for wholesale 
deposits from banks within another one. 

» The receiving bank must have an AA rating. 

» The committee of banks fixing the LIBOR has a guaranteed AA rating. 

» Short-term rate used for the floating leg of the swap. 

 LIBID 
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Swap rates... 
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Dashboarding  Gap Analysis 
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Orange County’s Yield Curve Plays 
 What’s a yield curve play? 

 

 

 

 At Orange County 
» Robert Citron was very successful in 1992 and 1993 with these yield curve 

plays 

» In 1994, he decided to use inverse floaters: interest = fixed rate – floating 
rate and leveraging that position by borrowing at the short-term rate. 

» When short-term rate rised, the portfolio had lost $1.5 billion and OC filed 
for bankruptcy. 

 Same game played by the Savings and Loans in the 80’s. 
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Bond pricing and Yields 
 Bond prices 

 

 

 

 Bond yield 
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How do you determine government zero rates? 
1. Looking at strips 

» Separate Trading of Registered Interest and Principal of Securities  
» Prices of zero-coupons  perfect discount factors 
» Example: Suppose you observe the following prices 

Maturity Price for $100 face value 

1   98.03 

2   94.65 

3   90.44 

4   86.48 

5   80.00 

 

2. Using the bootstrap method 
» Take bond prices for the various maturities (must be a continuous set) 
» Extract the 1y discount rate for the 1y bond 
» Use that rate and extract the 2y discount rate for the 2y bond 
» And so on... 
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How do you determine government zero rates? (2) 

3. Using discount, LIBOR, forward and swap rates 
» Combine these rates to generate the underlying zero-coupon curve 

» Extending the LIBOR beyond one year 

a) Create a yield curve that represents the rates a which AA-rated companies can 
borrow for periods of time longer than one year. 

b) Create a yield curve to represent the future short-term borrowing rates for 
AA-rated companies. 

 In practice, we do (b). 

» Example 
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The risk-free rate 
 It is usual to assume that the LIBOR/swap yield curve provides 

the risk-free rate 
» Treasury rates are too low 

Must be purchased by a variety of institutions to fulfill regulatory 
requirements 

 The amount of capital to support an investment in T-Bills and Bonds is lower 
than for other similar investments 

 Favorable tax treatment in the US 
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Macaulays’ duration 
 Duration 

» For a zero-coupon bond: maturity = duration 

» Weighted average of the times when the payments are made = weighted 
average of the maturities of zero-coupon bonds 

 

 

 

 Bond pricing and duration (with continuous compounding) 
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Modified duration 
 Bond pricing and duration 

» when y is expressed with annual compounding 

 

 

 

» with a compounding of m times during the year 

 

 

 

» If : 

 

» Then, we recover the following formulation 
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Convexity 
 Graph 
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Convexity 
 Formulation (continuous-time) 

 

 

 

 

 

 Formulation (discrete-time) 
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Portfolio immunization 
 For a portfolio P 

» Duration of the portfolio is the weighted average of the durations of the 
components 

 

 

» The duration of the ith asset is 

 

 

 

» Idem for the convexity 
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Problems with duration? 
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Calculating a partial duration 
 Partial duration 

» Formula 

 

» The sum of partial duration should equal the total duration 
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Example from Hull 
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Combining partial durations 
 Changes of -3e, -2e, -e, 0, e , 3e, 6e for a small e  in the 

1,2,3,4,5,7,10 y buckets 
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Interest rate deltas 
 Definitions 

» Change in value for 1bp parallel shift in the zero-curve 

» Delta, DV01 or PVBP 

» Delta = Duration * Value of the portfolio * 0.0001 

 

» As for the partial durations, it can be done for each point on the zero-
coupon curve. 

» The sum of the deltas should equal the delta of the portfolio 
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Change when one bucket is shifted 
 Approach used in ALM 

» GAP management 

» Only one bucket is impacted by 1bp  
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Principal components analysis (PCA) 
 The prior approach can lead to calculate 10 to 15 deltas for each 

curve 
» Quite overkill because variables are highly correlated between them 

» One idea would then to use historical data on movements in the rates and 
attempt to define a set of components that explain the movements. 

 Idea 
» Attempts to identify standard shifts (or factors) for the yield curve so that 

most of the movements that are observed in practice are combinations of 
the standard shifts  
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Application to IRs 
 Results of a study by Frye in 1997, published in Risk publications 

» The first factor is a  roughly parallel shift (83.1% of variation explained) 

» The second factor is a twist (10% of variation explained) 

» The third factor is a bowing (2.8% of variation explained) 

(the importance of a factor is measured by the standard deviation of its factor score) 
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Alternatives for Calculating Multiple Deltas 
 Shift individual points on the yield curve by one basis point 

 Shift segments of the yield curve by one basis point 

 Shift quotes on instruments used to calculate the yield curve 

 Calculate deltas with respect to the shifts given by a principal 
components analysis.  
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Gamma for Interest Rates 
 Gamma has the form  

 

 where xi and xj are yield curve shifts considered for delta 

 

 To avoid too many numbers being produced one possibility is  
consider only i = j 

 Another is to consider only parallel shifts in the yield curve 

 Another is to consider the first two or three types of shift given 
by a principal components analysis 
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Vega for Interest Rates 
 One possibility is to make the same change to all interest rate 

implied volatilities. (However implied volatilities for long-dated 
options change by less than those for short-dated options.)  

 Another is to do a principal components analysis on implied 
volatility changes. 
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