

Risk Management and Governance **Interest rate risk management**

Prof. Hugues Pirotte

reinvestment ast

 $0 - 5$

 $A - S$

هه. 5

ھ کے جا

Introduction

- Interest rate risk (IR risk) is more difficult to manage
	- » Various interest rates in each currency, not perfectly correlated
	- » We need a function describing the variation of the rate with maturity, the *term structure of interest rates* or *yield curve*. value (ist)
	- The points of the curve do not show only parallel movements.
- Tools available
	- Duration and convexity measures (equivalent to delta-gamma in previous slides)

20

PCA

- » Partial durations
- » Multiple deltas
- » Principal component analysis $(AC7)$
- » Evolution around the latter like ICA

Zero-rates

- *n*-year zero-coupon interest rate =
	- » Interest earned on an investment starting today and lasting *n* years.
	- **»** *n*-year spot rate, *n*-year zero rate, *n*-year zero $r(0,t)$ and $r^c(0,t)$
	- » Annual compounded and continuous compounded rates:
- The term structure of zero-rates is also called the *zero-curve*.

Forward rates

Annual compounded version

$$
(1+r(0,t_1))^{t_1} (1+f(t_1,t_2))^{t_2-t_1} = (1+r(0,t_2))^{t_2}
$$

\n
$$
\rightarrow f(t_1,t_2) = \left[\frac{(1+r(0,t_2))^{t_2}}{(1+r(0,t_1))^{t_1}} \right]^{t_2-t_1} - 1
$$

- **Continuously compounded version** $(1+r(0,t_1))^{n} (1+f(t_1,t_2))^{2^{n-1}} = (1+r(0,t_2))$

→ $f(t_1,t_2) = \left[\frac{(1+r(0,t_2))^{t_2}}{(1+r(0,t_1))^{t_1}}\right]^{t_2-t_1} - 1$

Continuously compounded version $\left(\frac{1}{2} + \frac{1}{2} + \$ *r*(0,*t*₁)×*t*₁ + *f*(*t*₁,*t*₂)×(*t*₂ - *t*₁)=*r*(0,*t*₂)×*t*₂ (t_1, t_2) $(0,t_2) \times t_2 - r(0,t_1)$ $(t_2 - t_1)$ $\binom{2}{2}$ \times t_2 – $r(0,t_1)$ \times t_1 $_1, t_2$ $2 - t_1$ $(t_1, t_2) \times (t_2 - t_1)$
 $(t_2, t_2) = \frac{r(0, t_2) \times t_2 - r(0, t_1) \times t_2}{t_2 - t_1}$ $f(t_1, t)$ $\frac{t_2 - t}{t_2 - t}$ $x_{t_2} - r(0,t_1) x_{t_1}$ $\to f(t_1,t_2) = \frac{r(0,1)}{2}$ \overline{a}
- Practitioners use also the previous approach when they work

Some forward rates

Empirical research and expectations

- The unbiased expectations hypothesis (UEH)
	- » "The forward rate is an unbiased predictor of the future spot rate"
	- » It cannot be true theoretically and almost surely cannot be true in reality
	- **»** The UEH implies that, e.g. for a zero-coupon bond... $f_0(T) = E[S(T)]$
 » By definition $S(0) = E[S(T)] S(0)(e^r 1) \pi$
	- **»** By definition $S(0) = E[X(T)] S(0)(e^{r})$ ies that, e.g. for a zero-coupon b
 $S(0) = E\left[S(T)\right] - S(0)\left(e^r - 1\right) - \pi$
	- \overline{p} To prevent arbitrage, we know that $f_0(T) = S(0)e^{rt}$
	- **»** Using the last two equations, we get $f_0(T) = E[S(T)] \pi$
- The local expectations hypothesis (LEH) equivalent to AOA
	- \mathcal{D} With AOA $f_0(T) = E^{\mathcal{Q}}[S(T)]$
	- » The equivalence of the forward price and expected spot price is, however, true only for one-period-ahead forward prices.
- » The expected returns, taken using the martingale probabilities, of any strategies involving any bonds of any maturity, are equivalent and equal to the one-period spot rate, i.e., the shortest interest rate in the market **The UEH implies that, e.g. for a zero-coupon bond...** $f_0(T) = E[S(T \rightarrow B)$ By definition $S(0) = E[S(T)] - S(0)(e^{r} - 1) - \pi$
 To prevent arbitrage, we know that $f_0(T) = S(0)e^{r}$
 To prevent arbitrage, we know that $f_0(T) = E[S(T)] - \pi$
- The market segmentation hypothesis
-

LIBOR rates...

LIBOR

- » *London Interbank Offered Rate*: 1m, 3m, 6m and 12m rates for wholesale deposits from banks within another one.
- » The receiving bank must have an AA rating.
- » The committee of banks fixing the LIBOR has a guaranteed AA rating.
- » Short-term rate used for the floating leg of the swap.
- LIBID

Dashboarding \rightarrow Gap Analysis

Orange County's Yield Curve Plays

What's a yield curve play?

- At Orange County
	- » Robert Citron was very successful in 1992 and 1993 with these yield curve plays
	- » In 1994, he decided to use *inverse floaters*: interest = fixed rate floating rate and leveraging that position by borrowing at the short-term rate.
	- » When short-term rate rised, the portfolio had lost \$1.5 billion and OC filed for bankruptcy.
- Same game played by the Savings and Loans in the 80's.

Bond pricing and Yields

Bond prices

 0, ` 1 1 0 or 0 1 0, *c i i i n n r t t ⁱ i t i i ⁱ c B c e B r t*

 Bond yield $1(0) = \sum_{i=1}^{ } c_i e^{-y^2 \times t_i}$ or $B^m(0) = \sum_{i=1}^{ } \frac{c_i}{(1+y)^2}$ such that
 $C_m^m(0) = \sum_{i=1}^n c_i e^{-y^c \times t_i}$ or $B^m(0) = \sum_{i=1}^n \frac{c_i}{(1+y)^{t_i}}$ 1 *c i i* at $\sum_{n=0}^{\infty}$ $\frac{n}{n}$ $f^{m}(0) = \sum_{i=1}^{n} c_{i} e^{-y^{c} \times t_{i}}$ or $B^{m}(0) = \sum_{i=1}^{n} c_{i}$ μ **t** σ **t** σ **t** σ **t** σ **t** σ $\sum_{i=1}^{n} c_i e^{-y^2 \times t_i}$ or $B^m(0) = \sum_{i=1}^{n} c_i$ *y c y* such that
 $B^m(0) = \sum_{i=1}^n c_i e^{-y^c \times t_i}$ or *B y* $\int_{-\mathbf{y}^c \times t_i}$ $\sum_{i=1}^{n} c_i e^{-y^2 \times t_i}$ or $B^m(0) = \sum_{i=1}^{n} \frac{1}{1 + t_i}$ that
= $\sum_{i=1}^{n} c_i e^{-y^c \times t_i}$ or $B^m(0) = \sum_{i=1}^{n} \frac{c_i}{(1+a)^m}$ at $\sum_{i=1}^n c_i e^{-y^c \times t_i}$ or $B^m(0) = \sum_{i=1}^n \frac{c_i}{(1+y)^{t_i}}$

where

 B^m = market price of the zero-coupon bond

How do you determine government zero rates?

1. Looking at strips

- **»** Separate Trading of Registered Interest and Principal of Securities (STR)
- \rightarrow Prices of zero-coupons \rightarrow perfect discount factors
- » Example: Suppose you observe the following prices

2. Using the bootstrap method

- » Take bond prices for the various maturities (must be a continuous set)
- » Extract the 1y discount rate for the 1y bond
- » Use that rate and extract the 2y discount rate for the 2y bond
- » And so on...

How do you determine government zero rates? (2)

3. Using discount, LIBOR, forward and swap rates

- » Combine these rates to generate the underlying zero-coupon curve
- » Extending the LIBOR beyond one year
	- a) Create a yield curve that represents the rates a which AA-rated companies can borrow for periods of time longer than one year.
	- b) Create a yield curve to represent the future short-term borrowing rates for AA-rated companies.

In practice, we do (b).

» Example

The risk-free rate

- It is usual to assume that the LIBOR/swap yield curve provides the risk-free rate
	- » Treasury rates are too low
		- \checkmark Must be purchased by a variety of institutions to fulfill regulatory requirements
		- \checkmark The amount of capital to support an investment in T-Bills and Bonds is lower than for other similar investments
		- \checkmark Favorable tax treatment in the US

Macaulays' duration

- Duration
	- λ For a zero-coupon bond: maturity = duration
	- \rightarrow Weighted average of the times when the payments are made = weighted average of the maturities of zero-coupon bonds

$$
D = \sum_{i=1}^{n} t_i \left[\frac{c_i e^{-yt_i}}{B} \right]
$$

Bond pricing and duration (with continuous compounding)

$$
\Delta B = \frac{dB}{dy} \Delta y \qquad \begin{cases} \text{Since } B = \sum_{i=1}^{n} c_i e^{-y^c \times t_i} ,\\ \Delta B = -\Delta y \sum_{i=1}^{n} c_i t_i e^{-y^c \times t_i} \end{cases}
$$

$$
\Delta B = -BD\Delta y \rightarrow \frac{\Delta B}{B} = -D\Delta y
$$

Modified duration

- Bond pricing and duration
	- » when *y* is expressed with annual compounding

Solvay Brussels School Economics & Management

» with a compounding of *m* times during the year

$$
\Delta B = -\frac{BD\Delta y}{1 + y/m}
$$

$$
\mathbf{b} \quad \mathbf{If} : \quad D^* = \frac{D}{1 + y/m}
$$

» Then, we recover the following formulation

$$
\Delta B = -BD^* \Delta y \quad \rightarrow \quad \frac{\Delta B}{B} = -D^* \Delta y
$$

OR

2) javalle

Convexity

-20.00 40.00 60.00 80.00 100.00 120.00 140.00 160.00 180.00 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 11% 12% 13% 14% 15% 16% 17% 18% 19% 20% Bond 1 (5y) Bond 2 (10y) Bond 3 (15y)

Graph

Convexity

Formulation (continuous-time)

Formula:
$$
C = \frac{1}{B} \frac{\partial^2 B}{\partial y^2} = \frac{\sum_{i=1}^n c_i t_i^2 e^{-y t_i}}{B}
$$

\nThus:
$$
\frac{\Delta B}{B} = -D\Delta y + \frac{1}{2} \frac{C(\Delta y)^2}{C(\Delta y)^2}
$$

Formulation (discrete-time)

$$
C = \frac{1}{B} \frac{\partial^2 B}{\partial y^2} = \frac{\sum_{i=1}^n c_i t_i t_{(i+1)} / (1+y)^{t_i}}{B}
$$

Portfolio immunization

For a portfolio P

» Duration of the portfolio is the weighted average of the durations of the components S
 $\sum_{n}^{n} \Delta Y$ we have that $D = -\frac{1}{n} \sum_{i}^{n} \Delta X_i$ ion of the portfolio is the weighted average of
onents
 $\Delta P = \sum_{i=1}^{n} \Delta X_i$ we have that $D_{pf} = -\frac{1}{P} \sum_{i=1}^{n} \frac{\Delta X_i}{\Delta y}$ lio P
f the portfolio is the weighted average of the dura
ts
 $\sum_{i=1}^{n} \Delta X_i$ we have that $D_{pf} = -\frac{1}{P} \sum_{i=1}^{n} \frac{\Delta X_i}{\Delta y}$

 $\sum_{j=1}^n \Delta X_j$ we have that $D_{pf} = -\frac{1}{P} \sum_{i=1}^n$ Since $\Delta P = \sum \Delta X_i$ we have that *i* we have that $D_{p f}$ $\sum_{i=1}^{n} \Delta X_i$ we have that $D_{pf} = -\frac{1}{P} \sum_{i=1}^{n} \frac{\Delta X}{\Delta y}$ on of the portfolio is the weig
nents
 $P = \sum_{i=1}^n \Delta X_i$ we have that D S
 $\sum_{i=1}^{n} \Delta X_i$ we have that $D_{pf} = -\frac{1}{P} \sum_{i=1}^{n} \frac{\Delta X_i}{\Delta y}$ Δ

The duration of the *i*th asset is
\n
$$
D_i = -\frac{1}{X_i} \frac{\Delta X_i}{\Delta y} \quad \text{hence } \underbrace{\begin{bmatrix} D_{pf} = \sum_{i=1}^n \frac{X_i}{P} D_i \\ \frac{1}{P} \frac{1}{P
$$

- » Idem for the convexity
- Therefore we have

$$
\frac{\Delta P}{P} = -D_{pf} \Delta y + \frac{1}{2} C_{pf} (\Delta y)^2
$$

Problems with duration?

Calculating a partial duration

- Partial duration
	- **»** Formula $D_i^p = -\frac{1}{p} \frac{\Delta P_i}{\Delta}$ *j j P D* $P \Delta r$ Δ $= - \frac{1}{2}$ Δ
	- » The sum of partial duration should equal the total duration

Example from Hull

or ery other

 Changes of -3*e*, -2*e*, -*e*, 0, *e* , 3*e*, 6*e* for a small *e* in the 1,2,3,4,5,7,10 y buckets

Interest rate deltas

- Definitions
	- » Change in value for 1bp parallel shift in the zero-curve
	- » Delta, DV01 or PVBP (Pressent Volue of 1BP)
		- \overline{p} Delta = Duration * Value of the portfolio * 0.0001
		- » As for the partial durations, it can be done for each point on the zerocoupon curve.
		- » The sum of the deltas should equal the delta of the portfolio

Change when one bucket is shifted

- Approach used in ALM
	- » GAP management
	- » Only one bucket is impacted by 1bp

Principal components analysis (PCA)

- The prior approach can lead to calculate 10 to 15 deltas for each curve
	- » Quite overkill because variables are highly correlated between them
	- » One idea would then to use historical data on movements in the rates and attempt to define a set of components that explain the movements.

Idea

» Attempts to identify standard shifts (or factors) for the yield curve so that most of the movements that are observed in practice are combinations of the standard shifts

$$
\frac{y}{dt} = b_1 \cdot X_1 + b_2 \cdot X_2 + \frac{c_6}{t}
$$

=
$$
\frac{y}{t} = b_1 \cdot X_1 + b_2 \cdot X_2 + \frac{mv}{t}
$$

=
$$
\frac{1}{t} \int_{t}^{t} \rho u \, dv = 0 \cdot X_1 + b_2 \cdot X_2 + \frac{mv}{t}
$$

Application to IRs

- Results of a study by Frye in 1997, published in *Risk publications*
	- » The first factor is a roughly parallel shift (83.1% of variation explained)
	- » The second factor is a twist (10% of variation explained)
	- » The third factor is a bowing (2.8% of variation explained)
	- (the importance of a factor is measured by the standard deviation of its factor score)

Alternatives for Calculating Multiple Deltas

- Shift individual points on the yield curve by one basis point
- Shift segments of the yield curve by one basis point
- Shift quotes on instruments used to calculate the yield curve
- Calculate deltas with respect to the shifts given by a principal components analysis.

Gamma for Interest Rates

 Gamma has the form $\partial x_i \partial x_j$ $\partial^2\Pi$

where xi and xj are yield curve shifts considered for delta

- To avoid too many numbers being produced one possibility is consider only $i = j$
- Another is to consider only parallel shifts in the yield curve
- Another is to consider the first two or three types of shift given by a principal components analysis

Vega for Interest Rates

- One possibility is to make the same change to all interest rate implied volatilities. (However implied volatilities for long-dated options change by less than those for short-dated options.)
- Another is to do a principal components analysis on implied volatility changes.

References

- Books & Notes
	- » RMH: Chap. 7
	- » Don Chance teaching notes